
Things You Can Do With
Standard Controls: The TButton
by Brian Long

One of the most common com-
plaints about the TButton is

that it has no Color property, unlike
similar controls in many 4GL pack-
ages. Another frequent whinge is
that the Caption property is limited
to one line of text. To resolve these
two issues we can take advantage
of the owner draw capabilities of
the button. Delphi’s TListBox,
TComboBox and TOutline controls
have properties which cater for
reasonably easy custom-drawn
versions (see the April 1997 issue
for details on how to take of advan-
tage of these facilities in TListBox
and TComboBox). For some reason
TButtons do not, despite Windows
support for this capability.

The use of owner drawn controls
tends to suggest the “owner” in the
term is you, the programmer, be-
cause it is you who does the draw-
ing. Technically, however, this is
not the case. The term comes from
Windows SDK programming. The
idea in Windows is that the con-
trol’s owner is responsible for
drawing it. Before continuing, we
will investigate these terms owner
and parent. They have specific
definitions in Windows and also in
Delphi. On the Windows side of
things, the terms relate to the
Windows interface elements that
Windows draws, as opposed to the
components that Delphi uses to
represent them and make them
easier to work with, that is they
relate to windows with window
handles.

Owner Windows
And Parent Windows
The relationship between owner
window and owned windows de-
fines which windows will be auto-
matically got rid of by Windows.
When an owner window is
destroyed, all the windows owned
by it are also destroyed. This is
the principal aspect of the

relationship, but additionally
owned windows are always above
their owners in the 3-D window
layering or Z-order, and when an
owner window is minimised,
owned windows are hidden.

The relationship between parent
window and child window defines
the ability to draw on the screen. A
child window can only draw itself
in its parent window’s client area.

When a window is created (with
Delphi this is done in the CreateWnd
method of a TWinControl) it can,
generally speaking, be categorised
as one of three types, as specified
by flags in its window style (which
can be set in the Delphi
CreateParams method).

Firstly, an overlapped window,
as specified by the ws_Overlapped
style, is supposed to be used as the
main application window in an API
written program, and comes
equipped with a caption bar,
border and client area.

Secondly, a popup window, as
specified by the ws_Popup style, is
intended to be used as a message
box, dialog or temporary window
that can appear outside of the
application window.

Lastly, a child window, as speci-
fied by the ws_Child style, is con-
fined to the client area of its parent
window. Unlike popup and over-
lapped windows, child windows
cannot be owners but can be
parents.

Delphi forms are normally over-
lapped windows apart from those
with BorderStyle set to bsNone
which are popup windows as are
Delphi 2 and 3 forms that have been
set to bsDialog. Table 1 shows
which windows become parents
and owners of other windows of
the varying types.

The parent can be changed after
window creation with a call to the
SetParent API, but the owner can-

not be changed. To find the owner
of a window, call
GetWindow(Wnd, gw_Owner)

where Wnd is the window handle.
This doesn’t work for child win-
dows as the parent and owner are
one and the same and so Windows
doesn’t bother to store the owner
information. To find the parent,
you can use GetParent(Wnd) or

GetWindowWord(
 Wnd, gww_HWndParent)

which changes to

GetWindowLong(
 Wnd, gwl_HWndParent)

in Win32. The approaches for
finding the parent and owner are
summarised in Table 2.

Owner Components
And Parent Components
Now let’s look at Delphi compo-
nents and consider the meaning
that they impose on the terms par-
ent and owner, or more correctly
the Owner and Parent properties.
Remember that Delphi compo-
nents are memory objects whose
task, in many cases, is to simplify
the manipulation of Windows inter-
face elements. When a Delphi com-
ponent is created there is no
Windows interface element, ie no
window handle. That comes later,
if at all.

Indeed as properties get modi-
fied, the window may get de-
stroyed and recreated several
times during the component’s life-
time. Examples of this include
setting the Sorted property of a
TListBox and the BorderIcons prop-
erty of a TForm. Windows doesn’t
support changing those attributes
of a window after it has been
created and so the VCL must de-
stroy and recreate the window. At
some point the component should

16 The Delphi Magazine Issue 22

get destroyed. If there is a valid
window handle at this point, the
represented window gets de-
stroyed also.

In the context of components,
the Owner property can refer to any
other component, not just one that
represents a window (that is, not
just TWinControls and descen-
dants). The point of a component’s
owner is to unburden the program-
mer from the requirement of call-
ing a component’s destructor or its
Free method. If you, the program-
mer, don’t destroy a component,
the component’s owner will do the
job during its own destruction.
Therefore the component’s mem-
ory will be de-allocated, and any
other appropriate tidying up will
be done. This is quite separate
from the idea of a window’s owner.

It is only visual components
(that is, TControls and their

descendants) that have a Parent
property, not all components. Simi-
lar to window parents, a TControl’s
Parent property dictates the
screen space on which the control
can draw. However a TControl
doesn’t necessarily have a window
handle and so does not necessarily
represent a Windows interface ele-
ment. For example a TSpeedButton
has no window handle (and conse-
quently it can’t take the focus): it is
manually drawn by code inside the
component class.

It is a TControl descendent, TWin-
Control, that adds support for
Windows interface elements. The
component that becomes the Par-
ent must be a TWinControl, or a com-
ponent inherited from one. If a
TWinControl has a Parent, then that
Parent will be a TWinControl-based
component that represents its
parent window.

Changing Parent And Owner
A component’s owner can be
changed by calling the owner’s
RemoveComponent method and then
any other component’s InsertCom-
ponent method: you cannot assign
a component to the Owner property
as it is read-only. The parent can be
changed by assigning a TWinControl
to the Parent property.

Owner Drawn Components
Let’s get back to how an owner
drawn control is supposed to work.
The idea is for the owner window
to implement the drawing of the
owned window. That means, if you
have a button that needs custom
drawing, the button’s owner does
the drawing. The button’s owner
window will be the same as its par-
ent window (since a button is cre-
ated with a ws_Child style), which
will be the form or panel or group
or notebook page etc that it has as
its Parent property.

When customising components’
functionality we tend to write event
handlers. These tend not to live in
the Parent component, but in the
form. As it happens, the form is set
as the Owner of all components
placed on the form at design time.
Therefore, when we set out to do
custom drawing of buttons, list-
boxes, combo boxes etc, which is
supposed to be done by the owner
window, we will actually do it in the
Owner component. So in Delphi,
owner drawn components should
be called Owner drawn components.
It is probably inconsequential, as
you are no doubt thinking!

The way owner drawn controls
work is by changing their window
style during window creation. A
special value indicating a desire for
owner drawing is used. At some
point, Windows sends the owner
window a wm_MeasureItem message,
and the owner fills in the parame-
ters telling Windows the coordi-
nates. In the case of listboxes and
combo boxes, this would be the
size of one item in the listbox. In the
case of variable sized owner draw
listboxes and combo boxes, this
would be sent for each item that
needed to be drawn on the screen.
The Windows documentation
states that wm_MeasureItem needn’t

Owner Parent

ws_Overlapped The desktop window The desktop window

ws_Popup Set by the WndParent
parameter in a call to
CreateWindow or
CreateWindowEx; if this
window is a child window,
the owner is the first
non-child parental ancestor
of WndParent

The desktop window, unless
one is explicitly set by a call
to the SetParent API

ws_Child The owner is implicitly the
same as the parent

Set by the WndParent
parameter to CreateWindow
or CreateWindowEx

➤ Table 1: Who can be an owner and a parent of a window

Owner Parent

ws_Overlapped GetWindow(Wnd,
gw_Owner)

GetParent(Wnd) returns 0,
ie HWnd_Desktop; can also
use GetWindowLong(Wnd,
gwl_HWndParent)

ws_Popup GetWindow(Wnd,
gw_Owner)

GetParent(Wnd) confusingly
returns the owner, so use
GetWindowLong(Wnd,
gwl_HWndParent); if there
is no parent, this will return
the owner

ws_Child GetWindow(Wnd,
gw_Owner) returns 0 so you
can use GetParent(Wnd)
since the parent is the same
as the owner

GetParent(Wnd)

➤ Table 2: Finding owner and parent windows

June 1997 The Delphi Magazine 17

be processed for owner draw
buttons.

When Windows wants the con-
trol to be drawn it sends the owner
window a wm_DrawItem message,
and the owner is required to do the
drawing. The plan is for the control
to have custom drawing, but the
control’s code need not be modi-
fied: its owner is modified instead.
This is a bit like the Delphi event
model: when you want to custom-
ise a component, you write an
event handler inside another class,
not in the component. However,
Windows messages and Delphi
events are not the same thing and
so we should see how the one gets
mapped to the other.

Components that support owner
drawing have OnDrawItem and On-
MeasureItem events that get trig-
gered at appropriate points. The
events are not in the owner window
component. The event handlers
might end up there but the events
are in the component itself. This
would imply that the owner win-
dow component passes informa-
tion back to the owner drawn
component to allow the events to
fire. How is this managed?

Notification Messages
These messages that get sent by
Windows to a control’s owner are
generically termed notification
messages. Delphi helps keep all of
the functionality used to represent
and manipulate a window under
the auspices of one component by
introducing a new set of parallel
messages called component notifi-
cations. These messages are manu-
factured by the VCL and the
message numbers start at cn_Base
($2000), rather above all the system
messages. The idea is that the Del-
phi component representing a con-
trol’s owner/parent might receive
notification messages for the con-
trol. To allow the component to
completely implement all the re-
quired functionality for the con-
trol, the parent sends the message
straight back to the control. To
avoid any confusion though, the
message is first turned into a
component notification.

Table 3 shows the two normal
Windows messages that have so

far been described and the equiva-
lent component notifications. You
can see that to turn the message
into a component notification, the
parent adds cn_Base to it and then
sends it off to the relevant control.
This is done in the DoControlMsg
subroutine in the Controls unit,
which is called by message han-
dlers for all the notification mes-
sages received by any TWinControl.

The net effect of this is to allow
the control component to imple-
ment its own owner draw function-
ality by implementing message
handlers for the component notifi-
cation messages (although as men-
tioned, buttons don’t need to react
to cn_MeasureItem).

Note that the TListBox, TComboBox
and TOutline components that al-
ready support owner drawing
make a point of still working as nor-
mal when told to be owner drawn
by their properties, until the ap-
propriate event handler is put in
place. To make the components
feel quite complete, when told to
be owner drawn, the components
deal with the drawing themselves.
It is only when an event handler
becomes associated with the
owner drawing event that they re-
linquish their responsibilities and
let the event handlers do the work.

Owner Drawn Buttons
The TButton will only draw itself
grey by default, or whatever colour
the Control Panel specifies a

button face is. It has no way of
drawing itself in any more imagina-
tive colours. This is because the
TButton is a simple representative
of a Windows button control, and
Windows draws buttons using col-
ours defined in the Control Panel.
In terms of Delphi colour con-
stants, the colours used are shown,
admittedly not to scale, in Figure 1.
Note that in Windows 95 a normal
button on a 16-bit Delphi app and
on a 32-bit Delphi app are drawn
slightly differently.

In truth the point made above
regarding the monotonous colour
scheme is not entirely true. In
Win32 applications, buttons can be
drawn in a different colour by re-
sponding to the Delphi component
notification message cn_CtlCol-
orBtn, which is sent by a button’s
parent when it receives a
wm_CtlColorBtn message. The
cn_CtlColorBtn message can be
trapped in a TButton descendant
component, or the wm_CtlColorBtn
message can be trapped in the
form, if the button is placed on a
form.

As mentioned, TButtons don’t
surface the inherent owner draw
support in Windows, so we’ll have
to build a new component. How-
ever the TBitBtn class, which draws
glyphs in various places, is an
owner draw button, so can we rip
most of the code from there? Well,
that’s not a bad idea. Indeed the
Buttons unit (home of the TBitBtn)

Message Value

wm_MeasureItem $2C

wm_DrawItem $2B

cn_MeasureItem cn_Base + wm_MeasureItem = $202C

cn_DrawItem cn_Base + wm_DrawItem = $202B

➤ Table 3: Windows notification and component notification messages

32-bit app button in Windows 95 16-bit app button in Windows 95

➤ Figure 1

18 The Delphi Magazine Issue 22

has a very handy routine called
DrawButtonFace that can draw the
various lines and rectangles that
make up an assimilation of both a
Windows 3.1x type button and a
Windows 95 type button. This

could be very useful inside our new
TButton derivative, since it should
be able to draw itself until the user
supplies a drawing event handler
(to be consistent with other owner
drawn components).

Additionally, there is a Win32 API
called DrawFrameControl that can
draw many controls for us includ-
ing buttons. The trouble with both
these is that they will only draw a
button in normal button colours.
One of the points of this control is
to cater for different color re-
quests. So we can get some ideas
from the TBitBtn, but not too much
code.

The resultant class for an owner-
draw button is in ODBUTTON.PAS
and is shown in Listing 1.

What do the methods do? Well,
the constructor sets up the default
colour and builds a canvas object
for use during owner-drawing and
the destructor frees it. So nothing
exciting there.

When the OwnerDraw property is
set, the SetOwnerDraw method is
called. If the new value is different
from the old value it causes the
Window button to be destroyed
and rebuilt from scratch by the
RecreateWnd call (see the article in
the April 1997 issue on listbox cus-
tomisations for more details on
this window reconstruction proc-
ess). The code in CreateParams en-
sures the window is built with the
correct style for owner drawing
(see Listing 2).

If the button is in an owner draw
state, then the cn_DrawItem mes-
sage handler will be invoked when
necessary (see Listing 3). That sets
the canvas up with an appropriate
device context handle (supplied by
a message parameter) and sets up
the button’s font and colour. Fi-
nally it calls the DrawButton method
which either draws the button, or
calls an event handler to do the job
if one exists.

DrawButton is quite a long rou-
tine, as the job of drawing a button
is quite involved. As shown in Fig-
ure 1 there are various lines in dif-
ferent colours. When the button is
pushed in, things change, and
when the button has focus addi-
tional bits need drawing: the
thicker black border and the
dashed rectangle around the
caption (see Figure 2).

The code that draws all these
masterpieces looks something like
Listing 4, but as you can see most
of it has been chopped out for

procedure TOwnerDrawButton.SetOwnerDraw(Value: Boolean);
begin
 if FOwnerDraw <> Value then begin
 FOwnerDraw := Value;
 RecreateWnd;
 end;
end;
procedure TOwnerDrawButton.CreateParams(var Params: TCreateParams);
const
 Styles: array[Boolean] of Longint = (0, bs_OwnerDraw);
begin
 inherited CreateParams(Params);
 with Params do
 Style := Style or Styles[FOwnerDraw];
end;

➤ Listing 2

TDrawButtonEvent = procedure(Button: TOwnerDrawButton;
 Canvas: TCanvas; Rect: TRect; State: TOwnerDrawState;
 Default: Boolean) of object;
TOwnerDrawButton = class(TButton)
private
 FCanvas: TCanvas;
 FColor: TColor;
 FDefault,
 FOwnerDraw: Boolean;
 FOnDrawButton: TDrawButtonEvent;
protected
 procedure CreateParams(var Params: TCreateParams); override;
 procedure CNDrawItem(var Msg: TWMDrawItem); message cn_DrawItem;
 procedure WMLButtonDblClk(var Msg: TWMLButtonDblClk);
 message wm_LButtonDblClk;
 procedure DrawButton(Canvas: TCanvas; const Rect: TRect;
 State: TOwnerDrawState);
 procedure SetButtonStyle(ADefault: Boolean); override;
 procedure SetColor(Value: TColor);
public
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 procedure SetOwnerDraw(Value: Boolean);
published
 property Color: TColor read FColor write SetColor default clBtnFace;
 property OwnerDraw: Boolean read FOwnerDraw write SetOwnerDraw;
 property OnDrawButton: TDrawButtonEvent
 read FOnDrawButton write FOnDrawButton;
end;

➤ Listing 1

procedure TOwnerDrawButton.CNDrawItem(var Msg: TWMDrawItem);
var State: TOwnerDrawState;
begin
 with Msg.DrawItemStruct^ do begin
 FCanvas.Handle := HDC;
 FCanvas.Font := Font;
 FCanvas.Brush := Brush;
 FCanvas.Brush.Color := FColor;
 { The Value typecast to Word is for cross-platform }
 { compatibility. In Win32 ItemState is a Longint. The }
 { typecast gives the low word, which is what we want }
 State := TOwnerDrawState(WordRec(Word(ItemState)).Lo);
 DrawButton(FCanvas, rcItem, State)
 end;
end;

➤ Listing 3

➤ Figure 2
Normal State Focused State Selected State

June 1997 The Delphi Magazine 19

brevity. The important point is that
the drawing only occurs if no event
handler has been assigned.

Three other methods need men-
tioning before we leave this topic
(shown in Listing 5). Firstly, when
the new Color property is modified,
SetColor is called. This stores the
new colour value and makes sure
the button redraws itself.

Secondly. with a normal TButton,
when you go tabbing round a form
and land on a button it gets a
thicker border indicating it is
selected. This is done in TButton.-
SetButtonStyle by toggling the win-
dow style of the button between
bs_PushButton and bs_DefPushBut-
ton. This behaviour needs to be
changed in the owner drawn but-
ton since the bs_OwnerDraw style will
not co-exist with any style other
than the default bs_PushButton. If
we let this happen, the first time
SetButtonStyle changes it to bs_De-
fPushButton, the button will no
longer be owner drawn. To fix this,
the new version changes a data
field which is checked in the owner
drawing code.

The last method is a wm_LBut-
tonDblClk message handler. With-
out this, if you very quickly do
several clicks on the button, it will
only depress every alternate click,
unlike normal buttons. This code
ensures that on the alternate
clicks, which are taken as double-
clicks, the button acts just like it
does on a normal single click.

The project ODBTNTST.DPR on
this month’s disk has an owner
drawn button on the form, along
with some other controls. At de-
sign time, the button draws itself
with a multi-line caption and an op-
erable Color property. At run-time,
the button’s OnDrawButton event
handler is used to draw the button
on the form. It also writes a number
on the form’s caption bar to indi-
cate how many times it has been
called. This event handler can be
modified to draw the button in any
fashion you like, but is not neces-
sarily required if you just want a
coloured button.

Auto-Repeating Buttons
The TDBNavigator component con-
sists of a number of speed buttons.

procedure TOwnerDrawButton.SetButtonStyle(ADefault: Boolean);
begin
 { Normally, when focus is received, TButton changes
 its style to give the thicker black border. But when
 owner drawn, you are not allowed other styles }
 if FOwnerDraw then begin
 FDefault := ADefault;
 Refresh;
 end else
 inherited SetButtonStyle(ADefault);
end;

procedure TOwnerDrawButton.SetColor(Value: TColor);
begin
 if FColor <> Value then begin
 FColor := Value;
 if not FOwnerDraw then
 OwnerDraw := True
 else
 InValidate;
 end;
end;

procedure TOwnerDrawButton.WMLButtonDblClk(var Msg: TWMLButtonDblClk);
begin
 Perform(wm_LButtonDown, Msg.Keys, Longint(Msg.Pos));
end;

➤ Listing 5

procedure TForm1.DataSource1DataChange(Sender: TObject; Field: TField);
begin
 BtnFirst.Enabled := not Table1.BOF;
 BtnPrior.Enabled := not Table1.BOF;
 BtnNext.Enabled := not Table1.EOF;
 BtnLast.Enabled := not Table1.EOF;
end;

➤ Listing 6

procedure TOwnerDrawButton.DrawButton(Canvas: TCanvas;
 const Rect: TRect; State: TOwnerDrawState);
var
 ... { full code on this month’s disk }
begin
 if Assigned(FOnDrawButton) then
 FOnDrawButton(Self, Canvas, Rect, State, FDefault)
 else
 ... { Draws button as in a 16-bit app under Windows 95 }
 ... { full code on this month’s disk }
end;

➤ Listing 4

➤ Figure 3

20 The Delphi Magazine Issue 22

If you hold down certain of these
buttons (Prior and Next), they
auto-repeat, ie they repetitively
trigger the action they are associ-
ated with. You get much the same
effect with keys on your keyboard.
If you are typing in an edit control
and hold down a key, it auto-
repeats at a certain rate. Windows
doesn’t offer this functionality in
buttons: the navigator had to
manufacture it. If we want the same
functionality in our own buttons
we can manufacture it in the same
way.

The project BTNRPT.DPR on this
month’s disk does just this. It has
several normal buttons on the

form, and uses various event han-
dlers and a TTimer to achieve the
effect. Additionally, the project
shows how to get your own naviga-
tion buttons to disable when ap-
propriate like the navigator’s (see
Figure 3). That particular task is
done in the OnDataChange event of
the data source connected to the
relevant dataset (see Listing 6).

There are only two buttons on
the form that need to auto-repeat,
the Next and Prev buttons, and so
it’s those that we will focus on. As
well as a normal OnClick handler,
they also have OnMouseDown, On-
MouseUp and OnMouseMove event han-
dlers (see Listing 7). The logic goes

like this. If the mouse is pushed in,
then start a timer ticking and keep
it going until the mouse is released.
If, while the mouse is pushed in, the
mouse moves off the button, the
timer is paused. If the mouse
moves back on the button, restart
the timer.

This mimics the behaviour of the
navigator. Indeed if you push any
button and then move the mouse
off it before releasing, the button
pops back up to indicate that if you
release the mouse button, the
button won’t get a click event.

Since a timer is required, one can
simply be placed on the form or
created upon demand. This project
takes the former option: it’s easier,
after all.

To make this functionality more
self-contained, it also comes sup-
plied as a component in
BTNREPT.PAS, which is used in a
second version of the above pro-
ject called BTNRPT2.DPR. This
project is a duplicate of the first but
uses the new TRepeatBtn compo-
nents for the Next and Prev buttons
instead of TButtons.

Conclusion
So there you have it. Now I’ve
shown you the way, I’m sure that
you will have endless fun designing
and building your own owner-
drawn buttons!

Brian Long is a UK-based freelance
Delphi and C++ Builder consultant
and trainer. He is available for
bookings and can be contacted by
email at blong@compuserve.com

Copyright ©1997 Brian Long
All rights reserved

procedure TForm1.NavBtnMouseDown(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Timer1.Interval := InitRepeatPause;
 Timer1.Enabled := True;
end;

procedure TForm1.NavBtnMouseMove(Sender: TObject;
 Shift: TShiftState; X, Y: Integer);
var
 Pt: TPoint;
begin
 { Even if mouse goes off button, mouse move events
 will still go to the button because it was created
 with the csCaptureMouse control style }
 Pt.X := X;
 Pt.Y := Y;
 if Timer1.Enabled then
 with (Sender as TButton) do
 Timer1.Enabled := PtInRect(Rect(0, 0, Width, Height), Pt)
end;

procedure TForm1.NavBtnMouseUp(Sender: TObject; Button: TMouseButton;
 Shift: TShiftState; X, Y: Integer);
begin
 Timer1.Enabled := False;
end;

procedure TForm1.TimerExpired(Sender: TObject);
var
 ActiveCtrl: TControl;
begin
 Timer1.Interval := RepeatPause;
 try
 ActiveCtrl := ActiveControl;
 (ActiveCtrl as TButton).Click;
 { If button has been disabled as a result of what }
 { happens in its OnClick method, shutdown timer }
 Timer1.Enabled := ActiveCtrl.Enabled;
 except
 Timer1.Enabled := False;
 raise;
 end;
end;

➤ Listing 7

June 1997 The Delphi Magazine 21

	Owner Windows And Parent Windows
	Owner Components And Parent Components
	Changing Parent And Owner
	Owner Drawn Components
	Notification Messages
	Owner Drawn Buttons
	Auto-Repeating Buttons
	Conclusion

